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Similarity solutions for the flow into a cavity 

By C. HUNTER 
Department of Mathematics, Massachusetts Institute of Technologyt 

(Received 26 July 1962) 

An investigation is made into the possible types of similarity solutions that can 
describe the symmetric flow of a fluid into an empty spherical cavity. The flow 
is homentropic, and the fluid obeys a perfect gas law p = ~ p .  Values of y in 
the range 7 3 y > 1 are discussed. In  this range, we find that similarity solutions 
in which the flow accelerates into the cavity exist for y > 3. For these solutions, 
the radius R of the cavity decreases as the nth power of time measured from the 
instant a t  which the cavity disappears. This power n increases monotonically 
as y decreases, and attains the value 1 for y = $. Similarity solutions in which the 
cavity collapses with constant velocity are given by the value n = 1, and such 
solutions are possible for all values of y in the range considered. 

1. Introduction 
Similarity solutions have been the subject of investigations in many different 

areas of fluid dynamics. In  the search for a similarity solution, one has ordinary 
differential equations rather than partial differential equations to discuss, which 
is naturally a great simplification. Moreover, similarity solutions are usually 
solutions of the full non-linear flow equations without the non-linear terms 
vanishing identically. The reduction to ordinary differential equations is a con- 
sequence of the fact that the dependent variables contain unknown functions 
only of some particular combination of the independent variables. In  unsteady 
compressible flow for instance, this combination is normally r/tn, where r is 
a distance variable, t is the time and n is some constant. It is clear therefore that 
such solutions have a singularity at the time t = 0, and therefore describe a 
rather special type of flow. One such solution is Taylor’s (1950) point blast 
solution in which a point source of energy is instantaneously released in an 
otherwise undisturbed medium. This gives rise to a similarity solution. Another 
similarity solution is that found by Guderley (1942) in his investigation of a 
spherical shock wave converging on a point. The geometrical convergence of the 
flow causes the shock to increase steadily in strength as it approaches its centre. 
This flow in the final stages can be described by a similarity solution, with a 
singularity occurring when the shock reaches its centre. 

A similar type of flow is the symmetric flow into an empty spherical cavity, 
which can occur in cavitation and implosion phenomena. Here too one can argue 
that the geometrical convergence of this flow causes it to tend to a similarity 
form as the flow progresses, and similarity solutions can indeed be found for 
this problem. The present paper is concerned with the possible forms these 
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similarity solutions can have. These similarity solutions, which apply only to 
the flow near the cavity as the cavity radius becomes small, have not been fitted 
to any initial flow conditions. This is likely to be difficult, and the similarity 
solutions are considered in isolation. We assume that the fluid obeys a perfect 
gas law, and we find that two classes of similarity solutions then exist: one in 
which the fluid moves into the cavity with constant velocity, and the other in 
which the fluid accelerates into the cavity. In  an earlier paper (Hunter 1960), 
the author found a similarity solution of this second type for the particular case 
of a fluid obeying a perfect gas law with y = 7 ,  the latter value arising from an 
approximate equation of state for water. In  this earlier work a numerical 
integration of the exact partial differential equations from some given initial 
conditions showed that the flow near the cavity does indeed tend to the similarity 
form as the cavity becomes small. 

There are dimensional reasons for expecting the flow near the cavity to tend 
to a similarity form as the cavity gets small. The relevant length scale for the 
flow in this region is the cavity radius R. Any dimensional length scale eventually 
becomes too large to be relevant as the collapse progresses. One would expect 
the velocity scale for the flow to be that of the cavity wall. This velocity we shall 
denote by fi, where the dot denotes differentiation with respect to time t. If 
inward flow velocities tend to become very large as R + 0,  then fi is indeed the 
only velocity large enough to provide a scale. However, it is also possible for 
the cavity to collapse finally with a constant velocity. Using fi as the relevant 
velocity scale, one can write an expression for the radial flow velocity as 

where r is radial distance from the centre of the cavity, T is some dimensional 
time scale, and fi is an unknown function. The function f l  could also depend on 
any dimensionless parameters there might be. Suppose that time is measured 
from the instant a t  which R = 0. Then, for sufficiently small times before R 
becomes zero, we might expect to be able to approximate to (1) by 

u=Afl  - o - fif - , say. 
(;7 ) - (;) 

It should be noted that this expression for u satisfies the kinematic boundary 
condition that the fluid velocity should be equal to that of the cavity on the 
cavity wall r = R provided f (1) = 1. 

An equation of state for the fluid is needed. We shall suppose that the flow is 
homentropic, and that the pressure p and the density p of the fluid a t  all points 
are connected by an equation of the perfect gas type 

where K and y are constants. Using this equation of state the equations of con- 
servation of momentum and mass for radial flow can be written 

P = KPY, (3) 



Ximilarity solutions for theJEow into a cavity 291 

where we have used c2 = dp/dp, the square of the velocity of sound in the fluid, 
as the single thermodynamic variable necessary to describe the state of the fluid. 

An expression for c2 corresponding to the expression (2) for u is 

where g is some unknown function. One can argue for such an expression in the 
same way as before. The flow is strongly influenced by the fact that there is a 
vacuum inside the cavity, and so pressure and therefore also c2 must vanish on 
the cavity wall. This boundary condition of c2 = 0 therefore does not furnish 
a dimensional scale for c2, and so we use the only velocity squared scale provided 
by the boundary conditions a t  the cavity, which is k2. Notice that the con- 
dition c2 = 0 at the cavity is satisfied if g( 1)  = 0. 

Solutions of the flow equations (4) and (5) with the similarity forms ( 2 )  and 
(6) are possible. The two partial differential equations of flow become two 
ordinary differential equations to be solved for the functions f and g, provided 
only that 

(7) _ -  - const. 
RR 
2 2  

R 7 A( -t)",  (8) 

This latter equation is satisfied by 

where A and n are constants. The only other possible solution of (7) is for R to 
be an exponential function of time, but we do not consider this possibility since 
it means that the cavity does not collapse in a finite time. We shall also limit our 
discussion to cavities which collapse with a non-zero velocity, so we shall suppose 
0 < n < 1. When n = 1, the cavity has a constant velocity of collapse. For 
0 < n < 1, the cavity accelerates inwards always and its final velocity at the 
instant t = 0 is infinite. 

The index n appears in the ordinary differential equations one obtains for the 
similarity solution functions f and g .  The cavity boundary conditions f (1) = 1, 
g(1) = 0 define a solution of these ordinary differential equations once y and n 
are given, but most of these solutions are not acceptable. This is due to the fact 
that most of the solutions have singularities for some value of r/R which corre- 
sponds to the so-called limiting characteristic curve. This is the inward pro- 
pagating characteristic which reaches the origin r = 0 a t  the instant when the 
cavity completes its collapse. Because such singularities must exist for all time, 
and so must have been fed into the flow initially at  precisely the right point to 
ensure their propagating to r = 0 at exactly the instant a t  which R becomes zero, 
we reject all solutions with such singularities as unrealistic. In  the case y = 7 
investigated earlier, it was found that a solution without a singularity on the 
limiting characteristic is possible for the particular value n = 0.5552. In  the 
present work we look for acceptable solutions for smaller values of y. Naturally 
the range 1 < y < $ is of particular interest, since it is relevant to perfect gases. 
We find that similarity solutions with accelerating fronts, that is with 0 < n < I, 
are possible for 7 3 y > +. For the solutions that have been found the value of 
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n increases as y decreases, and reaches the value 1 for y = 8. Thus, as y decreases, 
the collapse of the cavity becomes progressively less violent. 

A rough explanation based on energy considerations can be given to account 
for the difference in behaviour for different values of y. The collapse of the cavity 
is caused by a pressure difference between the cavity and the surrounding fluid. 
The pressure forces push the fluid into the cavity and, in so doing, do work on 
the fluid. This work is converted either into kinetic energy of motion or into 
compressional energy. In  the extreme case of an incompressible fluid, which can 
be regarded as the case y = co, all the work done must become kinetic energy. 
Actually, for an incompressible fluid, the similarity form (2) is an exact con- 
sequence of the continuity equation, and it can easily be seen that the asymptotic 
formula for the cavity radius as R -+ 0 is given by (8) with n = g. For the finite 
values of y considered, n is larger than t, and its increasing as y decreases repre- 
sents the fact that the collapsing motion is less violent when the fluid is more 
easily compressible, and more of the available energy is converted into com- 
pressional energy rather than into kinetic energy. It may be that for sufficiently 
small y it is impossible to have the fluid accelerating into the cavity in the final 
part of the collapse, but only to have it moving in with a constant velocity. This 
is the case as far as the similarity solutions so far discovered are concerned, 
though it has not been established generally. The similarity solutions possible 
in the case n = 1 when the cavity collapses with a constant velocity are discussed 
in 35. 

One result of the analysis is that both similarity solutions with accelerating 
fronts and solutions with constant velocity fronts are possible for y > Q .  In  this 
range therefore, assuming that the similarity solutions are indeed the correct 
asymptotic forms for describing the flow near the collapse point, there is a choice 
of possible asymptotic forms for flows. The asymptotic form attained by a parti- 
cular flow will depend on its initial conditions. Clearly any of the similarity solu- 
tions can be achieved if the initial conditions are so chosen that the similarity 
solution concerned is the exact solution to the flow problem. We should therefore 
expect there to be a class of initial conditions which leads to accelerating solu- 
tions, and another class which leads to constant-velocity solutions. The energy 
argument given above suggests that the accelerating solutions can be obtained 
if there is a sufficiently strong pressure gradient pushing fluid into the cavity. 
It is possible, too, that one of the types of similarity solution is unstable whereas 
the other is not, so that the latter tends to occur. If we begin to consider the 
stability of solutions, however, we must also recognize the possibility that the 
radially symmetric similarity solutions are unstable with respect to non- 
radially symmetric disturbances. This is certainly the case for an incompressible 
fluid, as Birkhoff (1954) has shown that the accelerating solution which exists 
in this case is unstable. 

2. The similarity equations 
As mentioned in 3 1, the assumption of the similarity forms (2) and (6), where 

R satisfies equation (8) ,  reduces the partial differential equati0n.s of flow to 
ordinary differential equations, which we shall now consider. For mathe- 
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matical convenience we shall not use r lR as the similarity variable, but the 

From expression (8) for the cavity radius we can derive the relation 

& = -nAl/nR1-(1/n), (10) 

from which it is apparent that the similarity expressions (2) and (6) can be 
written in the equivalent forms 

= - nA1/nT1-(1/n)P(C), c2 = n2A2/nr2-(2/”)G([), (11) 

where P and G are functions to be determined. At the cavity wall 6 = - 1, and 
the boundary conditions there give 

P ( - 1 )  = 1, G ( - l )  = 0. (12) 

Substitution of (11) into the flow equations (4) and (5) yields two ordinary 
differential equations 

(y  - 1) (1 + 6P)P’ +EG’ + (1 -n)  [ (y  - 1 ) P 2 +  2G] = 0,  

(y - 1) EGB” + (1 + @‘) G’+ (1 +n+ y-  3ny)PG = 0. 

(13) 

(14) 

Since we are seeking a solution for the flow outside the cavity before the collapse, 
we shall be interested in all r > R ,  which corresponds to - 1 < 6 < 0. To solve 
for P and G in this range, we have the boundary conditions (12) at 6 = - 1 which 
will completely determine the solution once y and n are specified. However, 
not all these solutions are acceptable ‘since it can be shown that two further 
conditions must be imposed on P and G. We shall suppose n + 1 for the time 
being. 

First, we expect the collapsing flow to become small at large distances from 
the cavity, so that u -+ 0 and c tends to some finite value as r + 00. The arguments 
given above for the existence of a similarity solution refer only to the region near 
the cavity, and we expect the similarity solution to apply only in a limited region. 
At the outer edge of this region, it must be matched to a solution in which u 
and c remain finite. By (ll), 

(15) 
n2A2( - ()2--2n G(6) , c 2 =  

u = -  nA ( - !9-” P(E) 
( - t)l+ ( - t)2-2% 

Now the value 5 = 0 refers to all T > 0 at t = 0. Thus, if u and c2 are to remain 
finite for finite r as ( - t )  -+ 0,  we must have 

(-c)l-nP(<) = ( -[)2-2”G(f;) = 0 at = 0. (16) 

Another and more significant condition is that obtained from a consideration 
of the singular points of equations (13) and (14). These equations can be written as 

= (3ny - n - y - 1) @‘G - ( 1 - n) ( 1 + @‘) [ (y - 1) P2 + 2G], ( 17) 

[( 1 + @‘)2 - Gg2] G’ = 2( 1 - n)  6G2 + (3ny - n - y - 1) P G  + 2(ny - 1) [ G P .  (18) 

(7 - 1) [( 1 + 6P)2 - Gt2]  P‘ 
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From this it is apparent that they have singular points where [( 1 + (F)2 - Gc2] 
vanishes. The cavity boundary conditions (13) at ( = - 1 make this expression 
vanish, so that E = - 1 is a singular point. There are actually two possible solu- 
tions satisfying these boundary conditions at k = - 1. One has G = 0 everywhere, 
which we reject for the obvious reason that it has zero density everywhere, and 
the other has a unique regular power series expansion about [ = - 1. This latter 
solution is the one we must accept. For this solution, [( 1 + gF)2 - Gf2] becomes 
negative as ( increases from - 1, but must be positive and equal to unity at 6 = 0 
by condition (16). There must therefore be another singular point of our equations 
in the range - 1 < 5 < 0 with which we are concerned. Let us denote this point 

This situation is well known in similarity solution problems, and was first 
encountered by Guderley (1942) in his investigation of the similarity solution 
for a converging spherical shock wave. It can easily be seen that the curve 6 = go 
in the ( r ,  t)-plane is a characteristic of the flow. In  particular, in our problem, 
it is the inward propagating characteristic which reaches the origin 0 a t  time 
t = 0. Now we expect F and G to be regular functions of ( at the singular point 
[ = to. If they were irregular, then these irregularities would persist in the flow 
for all time and propagate along the ingoing characteristic. This could happen 
only if they were fed into the flow initially at exactly the right position for them 
to reach the centre of the flow a t  the instant when the collapse is completed. Such 
a situation is far too special to be of interest to us, and we therefore demand that 
F and 0 are regular throughout - 1 < ( < 0. It is then necessary for the right- 
hand sides of (1 7) and (18) to vanish at the singular value( = (,and this condition 
is not normally satisfied by the solution which satisfies the cavity boundary 
conditions (12). However, n is still a free parameter, and we shall investigate 
how i t  can be chosen, once y is specified, so that a solution of equations (13) 
and (14) for F and G satisfying all the necessary conditions can be obtained. 

It is a special feature of this problem that the cavity surface ( = - 1, as well 
as the limiting characteristic ( = go, gives rise to a singular point of the similarity 
solution equations. This is a consequence of the fact that c = 0 on the cavity 
surface, and so the characteristic condition dr/dt = u ? c becomes drldt = u, 
which is satisfied by virtue of the cavity surface being a material surface. 

by 6 = ( 0 .  

3. Investigation of the similarity solutions 

a change of variables. If we define 

then equations (13) and (14) show that 

The solutions of (13) and (14) are most conveniently investigated by means of 

Y = - (F,  2 = t2G, (19) 

d Y  : dZ :a[ / (  = (y -  1) Y( Y - 1) (nY - 1)-2[3(y- 1 ) n Y  + 2n- 21 : 

(y -  1) Z[ - 2nZ+ 2nyY2+ Y(y - 3 +n-  3ny) + 21 : (y-  1) [( Y - 1)2-Z]. (20) 
The first ratio gives an equation involving Y and 2 only, and our problem can 
be regarded as that of finding a suitable solution of it. Thus we have 

(21) 
d Y  
dZ = (7- 1) Z[ - 2 n ~  + 2 n y ~ 2 +  ~ ( y  - 3 + n  - 3ny) + 21 * 

(y -  1) Y( Y - 1) (nY - 1)-2[3(y-  1 )nY +2n-  21 
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The cavity boundary conditions (12)  mean that the required solution of (21)  
must pass through the point Y = 1, 2 = 0. This point, which we shall denote 
by C, is a saddle-point singularity of (21)  for y > 1 and n + 1. Only two solution 
curves therefore pass through C. One of these solutions is the line 2 = 0. This is 
the solution with zero density which we met with and rejected earlier. The other 
solution through C is a curve tangent to the line 

a t  C. This solution corresponds to the regular solution of the equations for 
F and G mentioned earlier. It is clear that we shall be concerned only with the 
region 2 > 0, since 2 < 0 corresponds to negative values of c2. We therefore 
follow our solution curve out from C into the region 2 > 0. 

The conditions (16) on the solution for F and G at [ = 0 require that our 
solution has to go through the origin 0 of the (Y,Z)-plane, so that this point 
corresponds to [ = 0. The origin is a nodal singularity of (21)  into which integral 
curves are drawn, although in fact all functions have regular expansions about 
this point. 

The complicated part of finding a suitable integral curve going from C to 0 
is associated with the singular value 6 = [,, a t  which (1 + [F)z  - EzG = 0. This 
latter relation can be written as ( Y - 1)2 - 2 = 0,  and so defines a parabola in 
the (Y, 2)-plane. The situation in the (Y, 2)-plane is that our integral curve 
from C initially goes above this parabola and so must cross it to reach 0. We saw 
earlier that F and G must be regular a t  [ = to and this means that Y and 2 must 
be regular functions of c at the point where the integral curve in the (Y, 2)-plane 
crosses the critical parabola 2 = ( Y  - 1)2. It follows from (20) that this is only 
possible if both the numerator and denominator of (21)  vanish at this crossing- 
point. 

Now the points at which both the numerator and denominator of (21)  vanish 
are the singular points of (21).  As we have already seen, two of these are 0 and C, 
the latter lying on the critical parabola, though our solution must clearly cross 
the critical parabola at another point. There are four other singular points. One 
we shall denote by A at 

the point B a t  

and the two points on the critical parabola given by the roots of the quadratic 

Y = Ijn, Z = 0;  

Y = 2/n(3y-  l ) ,  2 = 3 ( y -  1)2/n2(3y-  1)2; 

Z(y - 1 )  n Y 2  + ( 5 n  - 3 + y - 3937) Y + 2( 1 - n) = 0, (23) 

which may or may not be real. We shall denote these points by D and E, with E 
corresponding to the large root. Clearly therefore our regularity condition 
requires that our solution curve cross the critical parabola at D or E only. (The 
point B lies on the critical parabola only for special values of y and n and, when 
i t  does, it  coincides with either D or E. The point A lies on the critical parabola 
only for the special case n = 1 which is investigated separately below.) 

It can also be seen from (20) that if our solution crosses the critical parabola 
at a point other than D or E, then d[ /d  Y = d[/dZ = 0 and so 6 attains a turning 
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value. The functions Y and 2 are not then single valued functions of t; and so 
are unacceptable. 

However, the condition that our solution curve cross the critical parabola a t  
D or E is only a necessary and not a sufficient condition for Y and 2 to be regular 
functions of 6 at the crossing point. Provided d Y / d [  + 0 at the crossing point, 
then 2 = Z( Y )  must also be a regular function. We can investigate the behaviour 
of 2 as a function of Y at D or E directly from equation (21). Suppose that 
Y = Yo and 2 = 2, a t  the singular point under consideration, and write 
y = Y -Yo, z = 2-2,. Then equation (21) becomes 

2- az + by  + quadratic and higher-order terms 
dz 

- 
cz + dy + quadratic and higher-order terms ’ (24) 

where 
a = 2-2n-3n(y-1)Y0, 

c = -2n(y-1)2, ,  

b = (y-1)[4nY,-3n-2Yo+1], 

d = (y-l)Z0[4nyY,+y-3+n-3ny].  

The study of differential equations of this type is classical. It is well known that 
there are no regular integrals for z = z(y) if (b  - c),  + 4ad < 0. In  this case the 
solutions all spiral into the singular point, or else circle it in the special case of 
b + c = 0. For (b - c ) ~  + 4ad > 0 and ad - bc > 0,  the singular point is a saddle 
point, and the two solutions which actually go into the singular point represent 
regular expansions z = z(y). In  the case of (b  - c ) ~  + 4ccd > 0 and ad - bc < 0, the 
singular point is a node and the situation is a little more complicated. The 
form of the solutions curves near the singular point is as shown in figure 1. 
Analytically the curves are described by the equation 

az + (A, - c) y = k[az + (A, - c )  y]h2’h1, (26) 

Az-A(b+c)+(bc-ad) = 0. (27) 

where the constant k varies for the different curves, and A, and A, are the roots 
of the quadratic 

We choose A, to be the larger in absolute magnitude. We shall refer to the 
solution given by az+ (A,-c)y = 0 (i.e. k: = 00) as the minor-axis solution, and 
that given by ax+ (A,-c)y = 0 (i.e. k = 0 )  as the major-axis solution. As can 
be seen from figure 1, all the other solutions are tangent to the major-axis 
solution. 

In  general both the major- and minor-axis solutions represent regular expan- 
sions for z = z@), and therefore for 2 = Z( Y) .  The only exceptions arise when the 
ratio A,/A, is a positive integer. This can be seen by substituting a series expansion 

= ply +/32Y2+/33Y3+ ..., (28) 

~ / 3 ; + P , ( b - ~ ) - d  = 0, (29) 

into equation (24). Solving for the coefficients, we get a quadratic for pl, 

the two roots of which can be written as /?, = (c-A,)/a and /3, = (c-h,)/a. 
These two values give rise to the major- and minor-axis solutions respectively. 
For the later coefficients in the series, we have equations of the form 

&[mb + (m + 1) a/?, - c] = terms involving /3,, p,, . . . , &-,. ( 30) 
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For P1 = (c--h,)/a, the term in the square bracket on the left-hand side of (30) 
is [mh, - A,], and for PI = (c - A,)/a, it is [mh, - A,]. There is never any difficulty 
in solving for all the P’S in the former minor-axis case, nor indeed in the latter 
major-axis case except when h,/h, = N ,  where N is a positive integer 2 2. 
Then equation (30) for the case rn = N degenerates into a relation connecting 
the already determined PI, P,, . . . , Pm-,, which in general is not satisfied. In  this 
case we no longer have a regular expansion z = z(y) since logarithmic terms must 
be included in the series. 

/ u z + ( / $ - c ) y = O  

FIGURE 1. The integral curves in the neighbourhood of a node. 

The one remaining possibility to be discussed is the case (6 - c ) ~  + 4ad = 0. 
The singular point is again a node, though it is special in that the major- and 
minor-axis solutions coincide. Equation (27) for h has equal roots. There is no 
difficulty in evaluating the coefficients of our power series (28), so that the two 
coincident axis solutions represent a regular expansion. 

Our mathematical problem in the (x 2)-plane is now finally clear. We must 
look for cases in which a regular solution through D or E links up with our 
solution from the saddle-point C. After crossing the critical parabola a t  D or E, 
our solution must go into 0. The investigation of the solution curves in the 
(Y, 2)-plane has to be carried out numerically, since I am unable to integrate 
equation (21) analytically except in a few special cases. 

4. Integrations of the (Y, 2)-equation 
We have already restricted our range of interest in the (y,%)-plane to the 

region 0 < rz < 1 and 1 < y < 7, and we shall now find further restrictions. One 
condition we shall impose is that 

0 
P 

n >  ____ 
5 - 3y-1‘ 
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It was shown in the earlier paper (Hunter 1960) that there is an infinite amount 
of energy concentrated at the collapse point T = 0, t = 0 if inequality (31) is 
not obeyed. 

Another important restriction comes from the fact that D and E do not exist 

or 

(32) 

(33) 

and so it is clear from our earlier discussion that one of these inequalities must 
hold. Actually the second possibility is excluded by condition (31) except in the 
range 1 < y < 1-053. Except in this region, we need use only inequality (32) 
since it implies (31) for 1 c y < 7. When (32) holds and n < 1, then both D and E 
lie on the critical parabola in the range 0 < Y < 1, and provide possible crossing 
places for a curve going from C to 0. 

The numerical calculations were so organized that the value of y was first 
fixed, and then integrations were carried out for various values of n < 1 satis- 
fying inequality (32). The singular points D and E appear and coincide when 
(32) is an inequality, and lie on the critical parabola in the range 0 < Y < 1. 
As n increases, they separate with E moving down the parabola towards C, and 
D moving up it towards Y = 0,Z = 1. Of the other singular points, A is always 
to the right of the region of interest, while B lies in the range 0 < Y < 1. Actually 
i t  is found that there are only two possibilities as far as the curve from C is 
concerned. One arises when 

In this case E is a saddle and the point B is a node interposed between C and E. 
The curve from C goes into B before it can cross the critical parabola. An in- 
vestigation of equations (20) shows that the value E = 0 is attained at B, whereas 
our condition (16) requires that it should be attained a t  0. All integral curves 
through B therefore are inadmissible. 

The second possibility as far as the curve from C is concerned is that it goes 
to E. This happens when E is either a spiral or a node. Only in the latter case are 
regular curves through E possible, and the point B does not then lie between 
C and E. 

To examine things in detail, the two regular curves that go through E when it 
is a node were integrated in the direction of increasing Y,  and the solution curve 
through C was integated in the direction of decreasing Y.  We looked for cases 
in which either of the two regular curves from E join up with that from C. 
A Runge-Kutta integration method was used, with four term Taylor series 
expansions to start the integrations. We shall now summarize the results. 

(i) The range 7 2 y > 2.4 

In  this range, the results are similar to those found in the earlier work for y = 7. 
The point E is either a node or a spiral, and for given y, a unique value of n is 
found for which the minor-axis solution from E links up with the solution from C. 
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When E fist appears, it is a node and its minor-axis solution goes above C. As 
n increases, this solution gradually drops down and actually passes through C 
for one unique value. Figure 2 shows an example of this, together with other 
integral curves in the (Y,Z)-plane. For larger values of n, the minor-axis 
solution curls round under itself for some value of Y less than 1 and heads 
for 0. As n is still further increased, the singular point E becomes a spiral and no 
regular solutions through E are possible. The values of n for which these different 
events occur are shown in table 1. 

+ B  

'*-., z= (Y- 112 

0 C Y 

FIGURE 2. Integral curves in the (Y, 2)-plane when the minor-axis solution 
through E links up with the solution through C. 

Regular E changes 

7 n = 0.5544 n = 0.5552 n = 0.5642 
5 0.5930 0.6009 0.6104 
3 0.6667 0-7086 0-7114 
2.5 0.6989 0.7641 0.7643 
2.45 0.7026 0-7710 0.7711 

TABLE 1 

Y E appears solution possible to a spiral 

One can also verify that in the cases where the solution from C links up with 
the minor-axis solution through E, it goes on into 0 and not to B. We therefore 
have similarity solutions which satisfy all the required conditions. There is no 
difficulty to going on and calculating Y and Z as regular functions of 6 (d Y/dc 0) 
and then the functions B' and B. This has not been done though, since we are 
restricting our investigation to establishing the existence of these similarity 
solutions. 

One can see in table 1 that, as y decreases, the value of n for which a regular 
solution is possible gets very close to the value of n at which E becomes a spiral. 
Actually the two values coincide for some value of y just in excess of 2.4. For 
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this value of y, the minor-axis solution from E links up with the solution from C 
a t  the particular value of n when (b-c)2+4ad = 0. This is the special case dis- 
cussed in $ 3  when the major- and minor-axis solutions coincide. For smaller 
values of y, the minor-axis solution from E always passes above C when E is 
a node, but we can have the major-axis solution from E linking up with the curve 
through C. The value y = 2.4 therefore marks a smooth transition to a different 
type of mathematical behaviour, though there does not appear to be any physical 
significance to this transition. 

In  the range 7 2 y > 2.4 no cases were found in which a major-axis solution 
through E links up with the curve from C. However, the accurate determination 
of this major-axis solution is more difficult than that of the minor-axis solution. 
This aspect of the problem is discussed more fully below in the next subsection. 

(ii) The range 2.4 2 y 2 3 
In  this region, values of n have been found for which the major-axis solution 
from E links up with the solution through C. The set of values for which a regular 
solution is possible in this way are given in table 2. Note that the value of n 

Y 
2.4 
2.3 
2.0 
1-9 
1.8 
1.7 
1.6 
1-55 
1.5 

Regular 
E appears solution possible 

0.7066 0.7782 
0.7148 0.7937 
0.7445 0.8502 
0.7560 0.8735 
0.7690 0.8996 
0.7834 0.9290 
0.7997 0.9623 
0.8085 0.9806 
0.8182 1~0000 

TABLE 2 

E changes 
to a spiral 

0.7782 
0.7939 
0.8568 
0.8865 
0.9244 
0.9770 

> 1  
> 1  
> 1  

for which E becomes a spiral is 1 for y = Q, and becomes greater than 1 for smaller 
y, and so this transition no longer concerns us. There is also the possibility of E 
being a saddle for y < Q as mentioned above, though this does not give rise to 
acceptable solutions. 

The fact that the value of n for which a regular solution is possible attains 
the value 1 for y = # can be checked theoretically. To discuss values of n near 1, 
we write n = 1-6 with 6 small. The co-ordinates of E are approximately 
Y = 1 - 18 2 ,  2 = $a2. To study the behaviour of curves in the region of C and E, 
we introduce scaled variables y’ and x ’ ,  where Y = 1 + Sy’, 2 = S2d.  The co- 
ordinates of C are y’ = 0,  x’ = 0, those of E me y‘ = - g, x’ = $ and the (Y, 2)- 
equation is 

dg’ y’(y’ - 1)  - 32’ 
- 

dx‘ ( y  - 1)  x ’ (  1 + 2y’) ’ (35 )  

when small terms of order S are neglected. This approximation is valid in the 
region near E and C. One can check that this equation has C as a saddle-point 
singularity and E as a node for y < Q, as they are of the full (Y, 2)-equation. 
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Now when y = #, the solution of (35) through C is 2z'+ y' = 0, which is also 
the major-axis solution through E, so that we have the correct type of link-up. 

The regular solutions calculated in the (q 2)-plane keep closer to the Y-axis 
as y decreases and n increases, and tend to the line 2 = 0 as the solution when 
y = # a n d n = 1 .  

Actually the behaviour of the major-axis solutions is much more varied than 
that of the minor-axis solutions. The reason for this is that it  is possible for the 
major-axis solution from E to change from going above the curve from C to 
going below it in two ways. Either it does so smoothly with the two curves linking 
up at  some stage, or else this change takes place discontinuously with no link-up 
occurring. This latter situation can occur when we approach one of the special 
cases discussed in 5 3 of h,/h, equal to a positive integer. We can see clearly what 
happens if we consider the simple model equation 

dy, Y 
dz mz+By2' 

where m and B are constants. The two roots of the equation for h are now h = m 
and h = 1, and we shall be interested in what happens as the value of m varies 
around the integral value 2. The point y = 0, z = 0 is a node, and equation (36) 
can be integrated easily to give as the major-axis solution 

z = By2/(2-m). (37) 

This expression is not valid for m = 2, when the integral becomes 

z = By2 logy, 

which is not regular. If we consider the intercept of the curve (37) with the line 
y = 1 for example, we see that it changes from being large and positive to large 
and negative as m goes through the value 2. 

Naturally the details of such a transition can be more complicated when we 
have a more complicated equation than (36) such as (21). Equation (36) is linear 
for z as a function of y, whereas (21) is not, and one can expect non-linear effects 
to be important in determining the detailed behaviour. However, we should 
still expect to get the effect of a sudden change in the major-axis curve for, as 
we see from (30), the /3, become large for m N when A,/& approaches the 
integral value N .  The numerical integrations indeed show such sudden changes 
with the major-axis curve changing from one side to another of the curve through 
C for h,/h, = 2 and h,/h, = 3. The results are included in figure 3, which is a plot 
of the (y ,  n)-plane showing the different types of behaviour. The dotted lines are 
the lines along which A,/& is an integer, the line h,/h, = 1 marking the change 
of E from node to spiral. The major-axis curve from E is above or below the curve 
from C in the different regions of the (y,n)-plane as shown. The only smooth 
transitions, and therefore regular solutions, found are those given in table 2, 
and these lie on the unbroken line in the figure. Presumably, in the particular 
case of y = 1.75 where the smooth transition curve intersects the h,/h, = 2 
curve, the resulting solution must be rejected since it is probably not regular at  E. 
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For all other cases we have a satisfactory solution and I have verified that all 
the curves go into 0 in the (Y, 2)-plane after crossing the critical parabola. 

It is not yet certain whether all the possible solutions with accelerating fronts 
have been found. The reason for this is that the survey of the region of interest 
of the (y ,  n)-plane is not complete. A complete mapping of the behaviour of the 
major-axis solutions for the whole of the (y,n)-plane that is of interest would 

Y 
1.6 1.7 1.8 1.9 2.0 

n 

0.90 - 

0.85 - 

FIGURE 3. The behaviour of the major-axis solution through E and the 
solution through C in regions of the (y, %)-plane. 

probably be lengthy and tedious. The reason for this is that the ratio &/A, varies 
from the value 1, when E changes to a spiral, to infinity at the lower end of the 
range of values of n for which E is a node. There are therefore an inh i t e  number 
of lines in the (y,  n)-plane on which the ratio A,/& is a positive integer, on each 
of which the major-axis curve may change sharply though this change need not 
necessarily be such that the major-axis curve changes sides of the curve from C. 
Also, in a numerical analysis, a sudden change in a higher-order term of the 
power series (28) would probably go unnoticed by a finite difference approxima- 
tion. Another complication is that all the integral curves through E have contact 
of a high order with the major-axis curve when A,/h, is large, as is shown by 
equation (26). It might therefore be difficult to distinguish numerically between 
the major-axis curve, and some other curve which starts close to it near E, but 
later diverges markedly from it. In  other words, integration out from E may be 
highly unstable. 

The above remarks apply to all the values of y that have been considered. 
We are therefore left with the result that the existence of a series of similarity 
solutions with accelerating fronts has been established for the range 8 < y < 7, 
though it is not known whether these are the only such similarity solutions. 
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5. Collapses at constant velocity 

We now consider the special case n = 1 in which the cavity collapses with a 
constant velocity. The problem can be discussed in the (Y, Z)-plane as before, 
and there are certain simplifications. The (Y, 2)-equation (21) reduces to 

d Y  Y[32-(Y-1)2]  _ -  
d 2  - 22[2 - (Y- l ) (yY-1) ] '  (39) 

which has only four singular points. The origin 0 and C at Y = 1, 2 = 0 are 
singular points as before. The others are B at 

Y = 2/(3y- l), 2 = 3(y- 1)2/(3y- 1)2 

and D at Y=O,  Z = l .  

The reason for this reduction from six to four singular points is due to the fact 
that both E and A have merged with C. The point C is no longer a simple saddle- 
point, but has a more complicated form as we shall show presently. As before, 
we need a solution going from C to 0. The argument given in 3 2 as to why the 
solution must pass through 0 has to be modified. We now deduce in a similar 
way that F and G must be finite at f [  = 0, and so Y and 2 must vanish there. 

To investigate the form of the solution curves near C, we write Y = 1 + y. 
The approximate form of (39) near C is 

dY 3 2  - y2 - -  
d 2  - 22[2 - (y - l )y ] '  

From this equation, the form of the integral curves near C can be sketched as 
in figure 4. The only curves which emerge from C lie below the parabola 3 2  = y2, 

and we can further approximate equation (39) for this region by 

dy ~ ~ - 3 2  _ -  
a2 - 2(y- 1) yZ' 

This equation is linear in y2 and can be integrated to give 

y2 = - 3 Z l o g Z + ~ Z  for y = 2, J 
where K is a constant of integration. 

Two different types of behaviour can be distinguished. For 1 < y < 2, the 
exponent 1/(y- 1) is greater than 1. The curves given by (42) therefore consist 
of the parabola y2 = 32/(2 - y )  given by the value K = 0, and a family of curves 
which are asymptotie to this parabola as C is approached. 

For y > 2, the approximate form of the solution curves near C is given by 
2 = Kl--Yy2y-2, so that all the curves are asymptotic to the y-axis at C. In  the 
intermediate case y = 2 ,  the curves are all asymptotic to  the curve 

y2 = - 3 2  log 2. 
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An important fact which emerges from the above investigation is that the 
solution curves which go through C lie below the critical parabola, and so do not 
have to cross it to reach 0. This is due to the fact that the crossing point E has 
merged with C. There is now no curve of the type c = const. other than the cavity 
surface which is a characteristic in the (r,t)-plane. We therefore avoid the 
matching problem we had previously. 

It is clear that some of the curves which leave C go into 0, and some curl 
upwards away from 0 as shown in figure 4. The general form of the integral 
curves in the (Y,Z)-plane is the same as that shown in Courant & Friedrichs 
(1948, p. 426, fig. 11). Comparing notation, the present Z is their C2 and Y is U. 
They label the singular points C and 0 with B and A respectively. 

CI Y 

FIGURE 4. The integral curves in the neighbourhood of C when n= 1. 

Another point to be made is that most of the solutions we have just discussed 
do not represent functions Y = Y(6) and Z = Z(<) which are regular a t  the 
cavity wall $ = - 1. It is not clear whether we should expect these functions to 
be regular a t  < = - 1. No problem arose earlier in this respect for n + 1, because 
C was then a simple saddle point, and the only non-trivial solution through it 
was regular there. Although the cavity surface can be regarded as a characteristic 
since the velocity of sound vanishes there, it does not follow that a singularity 
at the cavity surface persists in the flow for all time and must be fed in initially. 
This was the argument we used when we were discussing the so-called limiting 
characteristic c = to earlier. The standard proof of this latter result on pro- 
pagation along characteristics does not apply when the characteristic in question 
is a vacuum front. Gas fronts advancing into vacuum are an individual pheno- 
menon and their properties have not been fully explored. 

If one does demand that the similarity solution should have a regular expansion 
about < = - 1, the number of acceptable similarity solutions is limited. A search 
for regular expansions of Y(<) and Z(6) about c = - 1, or, equivalently, of a 
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regular expansion 2 = Z(y) of equation (39), shows that such an expansion is 
possible only for 1 < y < 2 .  The series obtained is 

where the general equation for a, (n 2 3) is 

a,(n + 2 - ny)  = terms involving a2, . . . , an-l. (44) 

A regular expansion therefore is possible provided y (n + 2)/n for some in- 
teger n 2 3. When n does take any one of this sequence of values, no solution 
is regular at C except the line Z = 0. 

We should expect the series solution (43) to behave in a similar manner to 
the major-axis solution, and undergo sudden changes when y changes through 
one of the values (n + 2)/n. This is found to be the case. Numerical integra- 
tions to determine the path of this regular solution, using the first four terms 
of series (43) to start the integration, show that the regular solution goes to 0 
for 2 > y > $, curls upwards away from 0 for g > y > 8, and then goes to 
0 again for Q > y > i. As before, the regular curve is a satisfactory solution only 
when it goes to 0. In all cases there are solutions which asymptote to the regular 
curve at  C and which go to 0, even when the regular curve at C does not itself 
go to 0. 
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